设为首页 加入收藏 登录旧版
基于图像感兴趣区域融合特征的PM2.5浓度预测方法
PM2.5 Concentration Prediction Based on Fusion Features of Image Regions of Interest
投稿时间:2021-06-21  修订日期:2021-08-21
DOI:DOI:10.19316/j.issn.1002-6002.2022.04.22
中文关键词:  大气污染监测  PM2.5浓度  感兴趣区域  传统图像处理  深度学习  融合特征
英文关键词:air pollution monitoring  PM2.5 concentration  region of interest  traditional image processing  deep learning  fusion features
基金项目:中国科学院战略性先导科技专项(A类-XDA19040202);北京信息科技大学其他纵向项目(20190193)
作者单位
张雨琪 北京信息科技大学信息与通信工程学院, 北京 100101 
焦瑞莉 北京信息科技大学信息与通信工程学院, 北京 100101 
薄宇 中国科学院大气物理研究所 中国科学院东亚区域气候-环境重点实验室, 北京 100029 
陶益凡 中国科学院大气物理研究所 公共技术服务中心, 北京 100029 
王立志* 中国科学院大气物理研究所 中国科学院东亚区域气候-环境重点实验室, 北京 100029 
通讯作者:王立志*  中国科学院大气物理研究所 中国科学院东亚区域气候-环境重点实验室, 北京 100029  
摘要点击次数: 518
全文下载次数: 5
中文摘要:
      通过图像预测PM2.5浓度的准确性,在很大程度上取决于模型所选用的特征参数。为丰富特征参数的表达,设计了一种基于图像传统特征与深度特征充分融合的PM2.5浓度预测方法。首先,根据不同PM2.5浓度下的成像差异,选定图像感兴趣区域,解决图像尺寸过大导致的模型运算效率较低问题。然后,针对所选取的局部图像,利用传统图像处理方法手动设计并提取图像浅表视觉特征,同时利用卷积神经网络自动提取图像深层语义特征。最后,将两种特征融合,交由卷积神经网络的全连接层实现对PM2.5浓度的回归预测。预测误差比对结果显示,相比使用单种特征,使用融合特征能够有效提高模型的预测性能。
英文摘要:
      The accuracy of PM2.5 concentration prediction using image largely depends on the features extracted by the model.In order to enrich the expression of feature parameters,a PM2.5 concentration prediction method based on the fusion of traditional image features and depth features is designed.Firstly,based on the imaging differences under different PM2.5 concentrations,the region of interest in the image is selected to solve the problem of low model efficiency caused by the excessively large image size.Secondly,the traditional image processing method is used to manually design and extract the superficial visual features of the selected partial image,and the convolutional neural network is used to automatically extract the deep semantic features of the image.Finally,the two features are merged,and the regression prediction of PM2.5 concentration is achieved through the fully connected layer of the convolutional neural network.Comparison on the prediction error of using a single feature and a fusion feature shows that the prediction performance of the model can be effectively improved by the fusion feature.
查看全文  查看/发表评论  下载PDF阅读器