设为首页 加入收藏 登录旧版
基于K-means聚类的沙尘天气快速识别技术研究
Research on the Fast Recognition Technology of Sand Dust Weather Based on K-means Clustering
投稿时间:2019-12-16  修订日期:2020-06-05
DOI:10.19316/j.issn.1002-6002.2020.05.17
中文关键词:  沙尘天气  监测数据  K-means聚类  沙尘识别
英文关键词:sand dust weather  monitoring data  K-means clustering  sand dust weather recognition
基金项目:国家自然科学基金资助项目"面向智慧城市的水资源多元数据融合与建模方法研究"(U1501253)
作者单位
郑淏 陕西省环境监测中心站, 陕西 西安 710054
西北工业大学自动化学院, 陕西 西安 710072 
薛惠锋 西北工业大学自动化学院, 陕西 西安 710072 
李养养 陕西省环境监测中心站, 陕西 西安 710054 
杨伟伟* 中国环境监测总站, 国家环境保护环境监测质量控制重点实验室, 北京 100012 
张宇 陕西省环境监测中心站, 陕西 西安 710054 
高山 西北工业大学自动化学院, 陕西 西安 710072 
通讯作者:杨伟伟*  中国环境监测总站, 国家环境保护环境监测质量控制重点实验室, 北京 100012  
摘要点击次数: 118
全文下载次数: 2
中文摘要:
      依据沙尘天气判定条件分析2018年春季(2—4月)陕西省西安市环境空气质量小时监测数据,共识别9 d受沙尘影响。研究基于K-means聚类沙尘天气分析方法,分析沙尘天气监测数据特征,并对沙尘识别聚类模型进行优化研究,识别的沙尘影响天气与传统方法一致。分析表明,聚类方法可用于沙尘天气监测数据的识别,与传统方法相比较,基于K-means聚类方法能够快速、准确识别沙尘影响天气。
英文摘要:
      According to judging conditions of sand dust weather,the ambient air quality hourly monitoring data in Xi'an,Shaanxi Province in the spring of 2018 (February to April) is analyzed,which identifies 9 days affected by sand dust weather.Based on the K-means clustering method for sand dust weather analysis,the characteristics of sand dust monitoring data are analyzed,and the sand dust identification clustering model is optimized.The identified sand dust weather is consistent with sand dust weather recognition by using the traditional method.The analysis shows that the clustering method can be used to identify sand dust weather monitoring data.Compared with the traditional method,the method based on K-means clustering is faster and more accurately of identifying the sand dust weather.
查看全文  查看/发表评论  下载PDF阅读器