设为首页 加入收藏 登录旧版
三维变分在PM2.5重污染数值模拟中的应用研究
Application of Three-Dimensional Variational Data Assimilation on Simulation of PM2.5 Heavy Pollution
投稿时间:2019-09-02  修订日期:2019-12-08
DOI:10.19316/j.issn.1002-6002.2020.02.09
中文关键词:  数值模型  三维变分  资料同化  成渝  重污染
英文关键词:numerical model  three-dimensional variation  data assimilation  Chengdu-Chongqing  heavy pollution
基金项目:国家重点研发计划项目(2016YFC0208803)
作者单位
陈焕盛 中国科学院大气物理研究所,大气边界层物理和大气化学国家重点实验室,北京100029 
王文丁 中国科学院大气物理研究所,大气边界层物理和大气化学国家重点实验室,北京100029 
田敬敬 中科三清科技有限公司,北京100029 
皮冬勤 中科三清科技有限公司,北京100029 
张稳定 中科三清科技有限公司,北京100029 
晏平仲 中国科学院大气物理研究所,大气边界层物理和大气化学国家重点实验室,北京100029 
吴剑斌 中科三清科技有限公司,北京100029 
吕晓彤 四川省生态环境研究院,四川 成都610041 
李振亮 重庆市生态环境科学研究院,重庆401147 
摘要点击次数: 280
全文下载次数: 55
中文摘要:
      为了探讨三维变分法(3DVAR)对成渝城市群冬季PM2.5重污染模拟的改善效果,采用3DVAR对成渝城市群2017年12月至2018年1月的空气质量数值模拟结果进行资料同化,对比评估嵌套网格空气质量预报模式(NAQPMS)原始数据与同化再分析数据的准确率,并分析成渝重污染特征。研究结果显示,3DVAR在PM2.5、PM10和NO2的同化实验中均取得较好的改善效果,成渝地区检验站点各污染物相关系数(r)的平均提升比例依次为44%、90%和332%,r改善的站点占检验站点总数的比例分别为98%、100%和82%;检验站点均方根误差(RMSE)的平均下降比例分别为15%、37%和31%,RMSE改善的站点占检验站点总数的比例为65%、98%和84%。与原始模拟结果相比,同化结果能够更准确地反映成渝地区冬季重污染期间的PM2.5和PM10空间分布特征。
英文摘要:
      In order to explore the improvement effect of 3DVAR assimilation method on PM2.5 heavy pollution simulation in winter of Chengdu-Chongqing urban agglomeration,the results of air quality numerical simulation from December 2017 to January 2018 in Chengdu-Chongqing urban agglomeration were assimilated using 3DVAR. The accuracy of NAQPMS model raw data and assimilation reanalysis data was compared and evaluated,and the local characteristics of heavy pollution were analyzed. The results showed that 3DVAR has achieved better improvement in the assimilation tests of PM2.5,PM10 and NO2. The average increasing ratio of the correlation coefficient(r) of pollutants for the test stations in Chengdu-Chongqing urban agglomeration was 44%,90% and 332%,respectively. The promotion of stations of r accounted for 98%,100% and 82% of the total number of inspection stations. The average improving rate of root mean square error(RMSE) of inspection stations was 15%,37%,and 31%,respectively,which accounted for 65%,98% and 84% of the total number of inspection stations. Compared with the original simulation results,the assimilation results can reflect the spatial distribution characteristics of PM2.5and PM10 during winter heavy pollution period more accurately in the Chengdu-Chongqing urban agglomeration.
查看全文  查看/发表评论  下载PDF阅读器